

    
      Navigation

      
        	
          index

        	
          next |

        	Ring 1.0 documentation 
 
      

    


    
      
          
            
  
Welcome to Ring’s documentation!

Contents:



	Getting Started

	Contributing
	Making Changes





	Compiling and installing
	Using the make-ring script (recommended)

	Just the daemon (advanced)

	Just libRingClient (advanced)

	Just the gnome client (advanced)





	Ring release process
	Release tarball

	Packaging

	Stable releases













          

      

      

    


    
         Copyright 2016, Savoir-faire Linux.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Ring 1.0 documentation 
 
      

    


    
      
          
            
  
Getting Started

For now, this manual only covers developers documentation. To get started with Ring, you should visit the download page [https://ring.cx/en/download] where there are instructions for installing Ring on your system.





          

      

      

    


    
         Copyright 2016, Savoir-faire Linux.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Ring 1.0 documentation 
 
      

    


    
      
          
            
  
Contributing

Ring loves external contributions but we do not use the Github PR system.
Instead, we host a public gerrit server: https://gerrit-ring.savoirfairelinux.com

Before submitting a contribution, you need to register on our Gerrit server
either with your Github or Google account.

Head to the settings section to set one of the following:


	http password and username: https://gerrit-ring.savoirfairelinux.com/#/settings/http-password

	ssh key: https://gerrit-ring.savoirfairelinux.com/#/settings/ssh-keys



In each Ring submodule there is a .gitreview file. It contains all the
necessary info to send a patchset to our gerrit server.

After you commited your changes (one or multiple commits) you can submit them
with:

git-review





More documentation on Gerrit can be found on the official website [https://www.gerritcodereview.com/].


Making Changes


	[Optionnal] Create a ticket in our Tuleap bug tracker https://tuleap.ring.cx/projects/ring



	Make commits of logical units.



	Check for unnecessary whitespace with git diff –check before committing.



	
	Make sure your commit messages are in the proper format

	
	50 chars title

	80 chars message width

















          

      

      

    


    
         Copyright 2016, Savoir-faire Linux.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Ring 1.0 documentation 
 
      

    


    
      
          
            
  
Compiling and installing

This section covers compiling the different components of Ring.



	Using the make-ring script (recommended)

	Just the daemon (advanced)

	Just libRingClient (advanced)

	Just the gnome client (advanced)









          

      

      

    


    
         Copyright 2016, Savoir-faire Linux.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Ring 1.0 documentation 

          	Compiling and installing 
 
      

    


    
      
          
            
  
Using the make-ring script (recommended)


Dependencies

The Ring installer uses python3. Please make sure it is installed before running it.




Initialize the repositories

./make-ring.py --init








On Linux


	Build and install all the dependencies:



./make-ring.py --dependencies





Your distribution’s package manager will be used.


	Build and install locally under this repository:



./make-ring.py --install






	Run daemon and client that were installed locally:



./make-ring.py --run





You can then stop the processes with CTRL-C.

You can also run them in the background with the --background argument and then use the --stop command to stop them. Stdout and stderr go to daemon.log and client-gnome.log.


Install globally for all users instead

./make-ring.py --install --global-install





Run global install:

gnome-ring





This already starts the daemon automatically for us.

Uninstall the global install:

./make-ring.py --uninstall










On OSX

You need to setup Homebrew (<http://brew.sh/>) since their is no built-in package manager on OSX.

Build and install all the dependencies:

./make-ring.py --dependencies





Build and install locally under this repository:

./make-ring.py --install






Output

You can find the .app file in the ./install/client-macosx folder.






On Android

Please make sure you have the Android SDK and NDK installed, and that their paths are properly set. For further information, please visit <https://github.com/savoirfairelinux/ring-client-android>

Build and install locally under this repository:

./make-ring.py --install --distribution=Android






Output

You can find the .apk file in the ./client-android/ring-android/app/build/outputs









          

      

      

    


    
         Copyright 2016, Savoir-faire Linux.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Ring 1.0 documentation 

          	Compiling and installing 
 
      

    


    
      
          
            
  
Just the daemon (advanced)


Linux


1. Compile the dependencies

cd ../contrib/
mkdir native
cd native
../bootstrap
make








2. Compiling dring

cd ../../
./autogen.sh
./configure
make








3. Installing dring

make install





Done !






OSX


1. Installing dependencies

Without a package manager

cd extras/tools
./bootstrap
make
export PATH=$PATH:/location/of/ring/daemon/extras/tools/build/bin





With a package manager (macports or brew)


	Install the following:

	
	automake

	pkg-config

	libtool

	gettext

	yasm










2. Compiling dependencies

cd contrib
mkdir native
cd native
../bootstrap
make -j








3. Compiling the daemon

cd ../../
./autogen.sh
./configure  --without-dbus --prefix=<install_path>
make





If you want to link against libringclient and native client easiest way is to
add to ./configure: --prefix=<prefix_path>

Done!




Common Issues

autopoint not found: When using Homebrew, autopoint is not found even when
gettext is installed, because symlinks are not created.
Run: brew link --force gettext to fix it.




Clang compatibility (developers only)

It is possible to compile dring with Clang by setting CC and CXX variables
to ‘clang’ and ‘clang++’ respectively when calling ./configure.

Currently it is not possible to use the DBus interface mechanism, and the
interaction between daemon and client will not work; for each platform where
dbus is not available the client should implement all the methods in the
*_stub.cpp files.









          

      

      

    


    
         Copyright 2016, Savoir-faire Linux.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Ring 1.0 documentation 

          	Compiling and installing 
 
      

    


    
      
          
            
  
Just libRingClient (advanced)


Basic Installation

These are generic installation instructions.

To install the appplication, type the following commands in a console, while in the root directory of this application:

mkdir -p build
cd build
cmake ..
make -j3
make install





The following options are often usefull to append to the cmake line:

-DRING_BUILD_DIR=<daemon install location>
-DCMAKE_INSTALL_PREFIX=<install location>
-DCMAKE_BUILD_TYPE=<Debug to compile with debug symbols>
-DENABLE_VIDEO=<False to disable video support>








Explanation

This script will configure and prepare the compilation and installation of the program and correctly link it against Ring daemon.

All needed files will be built in “build” directory.
So you have to go to this directory:

cd build





Then execute the Makefile, to compile the application (src, doc...)

make





Then install it all using:

make install





You have to use “sudo” to be able to install the program in a protected directory (which is the case by default and most of the time).
Therefore it will ask for your system password.




OS X Install

Install necessary tools:

brew install cmake
brew install qt5
export CMAKE_PREFIX_PATH=<path_to_qt5>





hint: default install location with HomeBrew is /usr/local/Cellar/qt5

First make sure you have built ring daemon for OS X.

mkdir build && cd build
cmake .. -DCMAKE_INSTALL_PREFIX=<install_dir_of_daemon> [-DCMAKE_BUILD_TYPE=Debug for compiling with debug symbols]
make install





You can now link and build the OSX client with Ring daemon and LRC library




Internationalization

To regenerate strings for translations we use lupdate (within root of the project)

lupdate ./src/ -source-language en -ts translations/lrc_en.ts

Hint: On OSX lupdate is installed with Qt in /usr/local/Cellar/qt5/5.5.0/bin/ when installed with HomeBrew







          

      

      

    


    
         Copyright 2016, Savoir-faire Linux.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Ring 1.0 documentation 

          	Compiling and installing 
 
      

    


    
      
          
            
  
Just the gnome client (advanced)


Requirements


	Ring daemon

	libRingClient

	GTK+3 (3.10 or higher)

	Qt5 Core

	X11

	gnome-icon-theme-symbolic (certain icons are used which other themes might be missing)

	libebook1.2 / evolution-data-server (3.10 or higher)

	libnotify (optional, if you wish to receive desktop notifications of incoming calls, etc)

	gettext (optional to compile translations)



On Debian/Ubuntu these can be installed with:

sudo apt-get install g++ cmake libgtk-3-dev qtbase5-dev libclutter-gtk-1.0-dev gnome-icon-theme-symbolic libebook1.2-dev libnotify-dev gettext





On Fedora:

sudo yum install gcc-c++ cmake gtk3-devel qt5-qtbase-devel clutter-gtk-devel gnome-icon-theme-symbolic evolution-data-server-devel libnotify-devel gettext








Compiling

Run the following from the project root directory:

mkdir build
cd build
cmake ..
make





You can then simply run ./gnome-ring from the build directory




Installing

If you’re building the client for use (rather than testing of packaging), it is
recommended that you install it on your system, eg: in ‘/usr’, ‘/usr/local’, or
‘/opt’, depending on your distro’s preference to get full functionality such as
desktop integration. In this case you should perform a ‘make install’ after
building the client.




Building without installing Ring daemon and libRingClient

It is possible to build ring-client-gnome without installing the daemon and
libRingClient on your system (eg: in /usr or /usr/local):


	build the daemon

	when building libRingClient, specify the location of the daemon lib in the
cmake options with -DRING_BUILD_DIR=, eg:
-DRING_BUILD_DIR=/home/user/ring/daemon/src

	to get the proper headers, we still need to make install libRingClient, but
we don’t have to install it in /usr, so just specify another location for the
install prefix in the cmake options, eg:
-DCMAKE_INSTALL_PREFIX=/home/user/ringinstall

	compile libRingClient and do ‘make install’, everything will be installed
in the dir specified by the prefix




	point the client to the libRingClient cmake module during configuration:
-DLibRingClient_DIR=/home/user/ringinstall/lib/cmake/LibRingClient






Debugging

For now, the build type of the client is “Debug” by default, however it is
useful to also have the debug symbols of libRingClient. To do this, specify this
when compiling libRingClient with -DCMAKE_BUILD_TYPE=Debug in the cmake
options.







          

      

      

    


    
         Copyright 2016, Savoir-faire Linux.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          previous |

        	Ring 1.0 documentation 
 
      

    


    
      
          
            
  
Ring release process

This page explains the process of making a new Ring release. It can be used as checklist of things to remember when making a new release. It was written to clarify the release process between the Ring dev team and the distribution maintainers.


Release tarball

Ring is released in the form of a tarball. They are hosted here:



	https://gpl.savoirfairelinux.net/ring-download/ring-release/tarballs/






Tarballs are generated from the integration branch of the ring-project [https://github.com/savoirfairelinux/ring-project] repository with a job on our Jenkins server [https://test.savoirfairelinux.com/]. They include a copy of all contrib libraries configured in daemon/contrib/src. If you are a Savoir-faire Linux employee, you may trigger the job from this page [https://test.savoirfairelinux.com/job/ring-release/].


Naming scheme

Tarballs respect the following naming scheme ring_<date>_<number_of_commits>.<commit_id>.tar.gz where:



	date is the current date, for example 20160422

	number_of_commits represents the number of commits that day

	commit_id is the commit id of the last ring-project commit











Packaging


Distribution packaging

Distribution packages should be generated from the release tarballs. It is best that distributions exclude as much embedded libraries as possible from the tarballs and use their packaged versions instead.


Debian

The Debian package is maintained by Alexandre Viau <aviau@debian.org> as part of the Debian VoIP Team <pkg-voip-maintainers@lists.alioth.debian.org>.

The packaging is maintained using git-buildpackage and can be found in the following Alioth repository:


	git.debian.org:/git/pkg-voip/ring.git



The repository contains a Debian.README file explaining the process of importing a new version. To upload a new version of Ring, manual action is required by Alexandre. If he is unavailable, other members of the Debian VoIP team may do the upload.






Upstream packaging

The Ring dev team builds packages for popular Linux distributions. Those packages are built weekly. Instructions on installing the repositories can be found on ring.cx/download [https://ring.cx/en/download].






Stable releases

At this moment Ring is still considered in beta and does not support stable releases. This may or may not change when the beta period is over. The most secure and stable version of ring is the tip of the master branch.







          

      

      

    


    
         Copyright 2016, Savoir-faire Linux.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	Ring 1.0 documentation 
 
      

    


    
      
          
            

Index



 




          

      

      

    


    
         Copyright 2016, Savoir-faire Linux.
      Created using Sphinx 1.3.5.
    

  _static/plus.png





_static/comment-close.png





_static/comment.png





_static/minus.png





_static/up-pressed.png





_static/file.png





_static/comment-bright.png





_static/down-pressed.png





_static/ajax-loader.gif





_static/up.png





_static/down.png





search.html


    
      Navigation


      
        		
          index


        		Ring 1.0 documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2016, Savoir-faire Linux.
      Created using Sphinx 1.3.5.
    

  

